Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Database
Language
Document Type
Year range
1.
Ann Hematol ; 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2234020

ABSTRACT

The SARS-CoV-2 pandemic has favored the expansion of telemedicine. Philadelphia-negative chronic myeloproliferative neoplasms (Ph-MPN) might be good candidates for virtual follow-up. In this study, we aimed to analyze the follow-up of patients with Ph-MPN in Spain during COVID-19, its effectiveness, and acceptance among patients. We present a multicenter retrospective study from 30 centers. Five hundred forty-one patients were included with a median age of 67 years (yr). With a median follow-up of 19 months, 4410 appointments were recorded. The median of visits per patient was 7 and median periodicity was 2.7 months; significantly more visits and a higher frequency of them were registered in myelofibrosis (MF) patients. 60.1% of visits were in-person, 39.5% were by telephone, and 0.3% were videocall visits, with a predominance of telephone visits for essential thrombocythemia (ET) and polycythemia vera (PV) patients over MF, as well as for younger patients (< 50 yr). The proportion of phone visits significantly decreased after the first semester of the pandemic. Pharmacological modifications were performed only in 25.7% of the visits, and, considering overall management, ET patients needed fewer global treatment changes. Telephone contact effectiveness reached 90% and only 5.4% required a complementary in-person appointment. Although 56.2% of the cohort preferred in-person visits, 90.5% of our patients claimed to be satisfied with follow-up during the pandemic, with an 83% of positive comments. In view of our results, telemedicine has proven effective and efficient, and might continue to play a complementary role in Ph-MPN patients' follow-up.

2.
Environ Sci Eur ; 34(1): 39, 2022.
Article in English | MEDLINE | ID: covidwho-1808337

ABSTRACT

Background: The objective of this study was to identify which air pollutants, atmospheric variables and health determinants could influence COVID-19 mortality in Spain. This study used information from 41 of the 52 provinces in Spain (from Feb. 1, to May 31, 2021). Generalized Linear Models (GLM) with Poisson link were carried out for the provinces, using the Rate of Mortality due to COVID-19 (CM) per 1,000,000 inhabitants as dependent variables, and average daily concentrations of PM10 and NO2 as independent variables. Meteorological variables included maximum daily temperature (Tmax) and average daily absolute humidity (HA). The GLM model controlled for trend, seasonalities and the autoregressive character of the series. Days with lags were established. The relative risk (RR) was calculated by increases of 10 g/m3 in PM10 and NO2 and by 1 â„ƒ in the case of Tmax and 1 g/m3 in the case of HA. Later, a linear regression was carried out that included the social determinants of health. Results: Statistically significant associations were found between PM10, NO2 and the CM. These associations had a positive value. In the case of temperature and humidity, the associations had a negative value. PM10 being the variable that showed greater association, with the CM followed of NO2 in the majority of provinces. Anyone of the health determinants considered, could explain the differential geographic behavior. Conclusions: The role of PM10 is worth highlighting, as the chemical air pollutant for which there was a greater number of provinces in which it was associated with CM. The role of the meteorological variables-temperature and HA-was much less compared to that of the air pollutants. None of the social determinants we proposed could explain the heterogeneous geographical distribution identified in this study. Supplementary Information: The online version contains supplementary material available at 10.1186/s12302-022-00617-z.

3.
Environ Sci Pollut Res Int ; 29(33): 50392-50406, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1712314

ABSTRACT

This study aims to identify the combined role of environmental pollutants and atmospheric variables at short term on the rate of incidence (TIC) and on the hospital admission rate (TIHC) due to COVID-19 disease in Spain. This study used information from 41 of the 52 provinces of Spain (from Feb. 1, 2021 to May 31, 2021). Using TIC and TIHC as dependent variables, and average daily concentrations of PM10 and NO2 as independent variables. Meteorological variables included maximum daily temperature (Tmax) and average daily absolute humidity (HA). Generalized linear models (GLM) with Poisson link were carried out for each provinces The GLM model controlled for trend, seasonalities, and the autoregressive character of the series. Days with lags were established. The relative risk (RR) was calculated by increases of 10 µg/m3 in PM10 and NO2 and by 1 °C in the case of Tmax and 1 g/m3 in the case of HA. Later, a linear regression was carried out that included the social determinants of health. Statistically significant associations were found between PM10, NO2, and the rate of COVID-19 incidence. NO2 was the variable that showed greater association, both for TIC as well as for TIHC in the majority of provinces. Temperature and HA do not seem to have played an important role. The geographic distribution of RR in the studied provinces was very much heterogeneous. Some of the health determinants considered, including income per capita, presence of airports, average number of diesel cars per inhabitant, average number of nursing personnel, and homes under 30 m2 could explain the differential geographic behavior. As findings indicates, environmental factors only could modulate the incidence and severity of COVID-19. Moreover, the social determinants and public health measures could explain some patterns of geographically distribution founded.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , COVID-19/epidemiology , Humans , Nitrogen Dioxide , Particulate Matter/analysis , Spain/epidemiology
4.
Environ Sci Eur ; 33(1): 107, 2021.
Article in English | MEDLINE | ID: covidwho-1394419

ABSTRACT

BACKGROUND: There are studies that analyze the role of meteorological variables on the incidence and severity of COVID-19, and others that explore the role played by air pollutants, but currently there are very few studies that analyze the impact of both effects together. This is the aim of the current study. We analyzed data corresponding to the period from February 1 to May 31, 2020 for the City of Madrid. As meteorological variables, maximum daily temperature (Tmax) in ºC and mean daily absolute humidity (AH) in g/m3 were used corresponding to the mean values recorded by all Spanish Meteorological Agency (AEMET) observatories in the Madrid region. Atmospheric pollutant data for PM10 and NO2 in µg/m3 for the Madrid region were provided by the Spanish Environmental Ministry (MITECO). Daily incidence, daily hospital admissions per 100.000 inhabitants, daily ICU admissions and daily death rates per million inhabitants were used as dependent variables. These data were provided by the ISCIII Spanish National Epidemiology Center. Generalized linear models with Poisson link were performed between the dependent and independent variables, controlling for seasonality, trend and the autoregressive nature of the series. RESULTS: The results of the single-variable models showed a negative association between Tmax and all of the dependent variables considered, except in the case of deaths, in which lower temperatures were associated with higher rates. AH also showed the same behavior with the COVID-19 variables analyzed and with the lags, similar to those obtained with Tmax. In terms of atmospheric pollutants PM10 and NO2, both showed a positive association with the dependent variables. Only PM10 was associated with the death rate. Associations were established between lags 12 and 21 for PM10 and between 0 and 28 for NO2, indicating a short-term association of NO2 with the disease. In the two-variable models, the role of NO2 was predominant compared to PM10. CONCLUSIONS: The results of this study indicate that the environmental variables analyzed are related to the incidence and severity of COVID-19 in the Community of Madrid. In general, low temperatures and low humidity in the atmosphere affect the spread of the virus. Air pollution, especially NO2, is associated with a higher incidence and severity of the disease. The impact that these environmental factors are small (in terms of relative risk) and by themselves cannot explain the behavior of the incidence and severity of COVID-19.

5.
Environ Sci Pollut Res Int ; 28(37): 51948-51960, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1227892

ABSTRACT

Scientific evidence suggests that Saharan dust intrusions in Southern Europe contribute to the worsening of multiple pathologies and increase the concentrations of particulate matter (PM) and other pollutants. However, few studies have examined whether Saharan dust intrusions influence the incidence and severity of COVID-19 cases. To address this question, in this study we carried out generalized linear models with Poisson link between incidence rates and daily hospital admissions and average daily concentrations of PM10, NO2, and O3 in nine Spanish regions for the period from February 1, 2020 to December 31, 2020. The models were adjusted by maximum daily temperature and average daily absolute humidity. Furthermore, we controlled for trend, seasonality, and the autoregressive nature of the series. The variable relating to Saharan dust intrusions was introduced using a dichotomous variable, NAF, averaged across daily lags in ranges of 0-7 days, 8-14 days, 14-21 days, and 22-28 days. The results obtained in this study suggest that chemical air pollutants, and especially NO2, are related to the incidence and severity of COVID-19 in Spain. Furthermore, Saharan dust intrusions have an additional effect beyond what is attributable to the variation in air pollution; they are related, in different lags, to both the incidence and hospital admissions rates for COVID-19. These results serve to support public health measures that minimize population exposure on days with particulate matter advection from the Sahara.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Dust/analysis , Humans , Incidence , Pandemics , Particulate Matter/analysis , SARS-CoV-2 , Spain/epidemiology
6.
Environ Res ; 195: 110766, 2021 04.
Article in English | MEDLINE | ID: covidwho-1046459

ABSTRACT

Research that analyzes the effect of different environmental factors on the impact of COVID-19 focus primarily on meteorological variables such as humidity and temperature or on air pollution variables. However, noise pollution is also a relevant environmental factor that contributes to the worsening of chronic cardiovascular diseases and even diabetes. This study analyzes the role of short-term noise pollution levels on the incidence and severity of cases of COVID-19 in Madrid from February 1 to May 31, 2020. The following variables were used in the study: daily noise levels averaged over 14 days; daily incidence rates, average cumulative incidence over 14 days; hospital admissions, Intensive Care Unit (ICU) admissions and mortality due to COVID-19. We controlled for the effect of the pollutants PM10 and NO2 as well as for variables related to seasonality and autoregressive nature. GLM models with Poisson regressions were carried out using significant variable selection (p < 0.05) to calculate attributable RR. The results of the modeling using a single variable show that the levels of noise (leq24 h) were related to the incidence rate, the rate of hospital admissions, the ICU admissions and the rate of average cumulative incidence over 14 days. These associations presented lags, and the first association was with incidence (lag 7 and lag 10), then with hospital admissions (lag 17) and finally ICU admissions (lag 22). There was no association with deaths due to COVID-19. In the results of the models that included PM10, NO2, Leq24 h and the control variables simultaneously, we observed that only Leq24 h went on to become a part of the models using COVID-19 variables, including the 14-day average cumulative incidence. These results show that noise pollution is an important environmental variable that is relevant in relation to the incidence and severity of COVID-19 in the Province of Madrid.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/adverse effects , Air Pollution/analysis , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Humans , Incidence , Noise/adverse effects , Particulate Matter/analysis , Particulate Matter/toxicity , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL